Resilience of sink filtering scheme in wireless sensor networks

Original: Computer Communications, 06
Author: Miao Ma
Reporter: Yu-Hang Liu
Date: 2007/05/23
Outline

- Motivation
- Problem Definition
- State of the Art
- Assumption and network model
- Sink filtering scheme
- Resilience analysis
- Overhead analysis
- Conclusion
Motivation

- **Wireless Sensor Network (WSN)**
 - Major application
 - Monitor environment events
 - Transmit events to Sink
 - Node could be captured and compromised
 - False data injection attack
 - False alarm
 - Wastes sensor’s energy
Motivation

- Small low-powered sensor are constrained in their capabilities

- Some papers proposed
 - IHA and SEF, break down if attacker has compromised T nodes.
 - LBRS, it needs other location scheme to obtain sensor’s geographic location.
Problem Definition

- Goal
 - Defend against false data injection attack
 - Scheme is resilient to an increasing number of compromised nodes, without breakdown problem
Assumption and network model

- Heterogeneous sensor network
 - Basic sensor
 - Inexpensive
 - power-limited
 - CH (Cluster-Head)
 - More capabilities
 - Richer power supply
 - More compromised-resilient
Assumption and network model

- Uniform distribution
- Sink at center
- Define Deployment density as n
- $N = \lceil nA^2/\pi r_s^2 \rceil$
- $s = N/C$

<table>
<thead>
<tr>
<th>N</th>
<th>The total number of basic sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_c</td>
<td>The communication range of a basic sensor</td>
</tr>
<tr>
<td>r_s</td>
<td>The sensing range of a basic sensor</td>
</tr>
<tr>
<td>n</td>
<td>The average number of basic sensors within r_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>The number of grids</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>The number of sensor in cluster</td>
</tr>
</tbody>
</table>
Assumption and network model

- Key management
 - Before deployment
 - Each sensor i shares a secret key with sink, $K_{(ID_i,S)}$.
 - CH_j knows 8 neighborhood CH_k and their pairwise keys $K_{(CH_j,CH_k)}$.
 - After deployment
 - Each sensor i establishes a pairwise key with its one-hop neighboring basic sensors j, $K_{(ID_i,ID_j)}$.
 - Each CH_j establishes a pairwise key with every basic sensor i within its cluster, $K_{(CH_j,ID_j)}$.
Assumption and network model

- Sensing coverage
 - A real event occurs, \(n \) basic sensors within the sensing range can sense it.
 - In reality, if \(n \) basic sensors in different cluster, CHs do inner working.

- Routing
 - Ring-by-ring through the CHs
Sink filtering scheme

Node$_i (1, \ldots, n)$

CH$_j$

1. Verifies each MAC
2. If all legitimate, generates

- $ID_{CH_j} | R_{CH_j}$
- $ID_1 | R_1 | MAC(K_{(ID_1,CH_j)}, ID_{CH_j} | R_{CH_j} | ID_1 | R_1)$
- \vdots
- $ID_n | R_n | MAC(K_{(ID_n,CH_j)}, ID_{CH_j} | R_{CH_j} | ID_n | R_n)$

n
- Number of basic sensors within a sensing range

$K_{(i,j)}$
- The pairwise key between i and j

MAC(K,M)
- Message authentication code of message M with a symmetric key K

R_i
- Sensing result

R_{CH_j}
- Aggregation report
Sink filtering scheme

1. Verifies corresponding MAC
2. Generates

\[
\text{ID}_i \mid \text{MAC(} K_{(i,S)}, \text{ID}_{\text{CH}_j} | R_{\text{CH}_j} | \text{ID}_i) \times n' \rightarrow 1. \text{ Collects all } n' \text{ proofs } \\
2. \text{ Generates }
\]

\[
\text{ID}_{\text{CH}_j}, E(K_{(S,\text{CH}_j)}, \text{ID}_{\text{CH}_j} | R_{\text{CH}_j} | \text{ID}_1 | \text{MAC(} K_{(\text{ID}_1,S)}, \text{ID}_{\text{CH}_j} | R_{\text{CH}_j} | \text{ID}_1) \\
\vdots \\
\text{ID}_{n'}, \text{MAC(} K_{(\text{ID}_{n'},S)}, \text{ID}_{\text{CH}_j} | R_{\text{CH}_j} | \text{ID}_{n'}) \rightarrow \text{Sink}
\]

\(n'\)	\(m < n' \leq n\), where \(m\) is the threshold of endorsements for a legitimate report
E(\(K,M\))	Encryption of message \(M\) using a symmetric key \(K\)
\(S\)	Sink
Resilience behavior within a cluster

- Intruding basic sensor
 - Fail to provide a valid MAC
- Intruding CH
 - Cannot forge an aggregation report

- Copy some compromised basic sensors from kth cluster into jth cluster.
 - CH_j is able to recognize that.
 - Cannot know keys
- Copy some compromised CH from kth cluster into jth cluster
 - Cannot know key
Resilience behavior within a cluster

- Compromised CH
 - False data injection attack
 \[P_f = \sum_{i=m}^{s} \binom{s}{i} p^i (1 - p)^{s-i}, \]
 where \(p = \frac{1}{2^e} \) and \(e \) is the size for each MAC in bits.
 - Selective forwarding attack
 - Watchdog mechanism are applicable to deal with it.
Resilience behavior within a cluster

- Compromised basic sensors \((t < m)\)
 - Forge raw data attack (with valid MAC)
 - Robust aggregation algorithm can tolerate the number of incorrect raw sensing results
 - Wrong MAC attack
 - Any intermediate CH node is not allowed to drop packets
Resilience behavior within a cluster

- Compromised CH and basic sensors simultaneously ($t < m$)
 - False data injection attack

 \[
 P_f = \sum_{i=m-t}^{s-t} \binom{s-t}{i} p^i (1-p)^{s-t-i}
 \]

 where $p = \frac{1}{2^e}$ and e is the size for each MAC in bits

- Even if a cluster is fully compromised ($t \geq m$), the forging ability is only limited in this cluster.
Resilience analysis

- **Proposition 5.1**
 \[E[D_t] = \frac{C(s \choose t) \cdot (N-s \choose k-t)}{N \choose k} \approx C \cdot e^{-\frac{k}{c}} \cdot \left(\frac{k}{C}\right)^t \]

- **Corollary 5.2**
 \[E[Y] = \sum_{t=m}^{s} D_t = \sum_{t=m}^{s} \frac{C(s \choose t) \cdot (N-s \choose k-t)}{N \choose k} \approx \sum_{t=m}^{s} C \cdot e^{-\frac{k}{c}} \cdot \left(\frac{k}{C}\right)^t \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^2</td>
<td>Deployment area</td>
<td>$1000m \times 1000m$</td>
</tr>
<tr>
<td>a^2</td>
<td>Cluster area</td>
<td>$50m \times 50m$</td>
</tr>
<tr>
<td>r_s</td>
<td>Sensing range of a basic sensor</td>
<td>$20m$</td>
</tr>
<tr>
<td>r_c</td>
<td>Communication range of a basic sensor</td>
<td>$40m$</td>
</tr>
<tr>
<td>n</td>
<td>Number of basic sensors within a sensing range</td>
<td>12</td>
</tr>
<tr>
<td>N</td>
<td>Number of basic sensors in entire area</td>
<td>9600</td>
</tr>
<tr>
<td>C</td>
<td>Number of CHs (i.e., clusters)</td>
<td>400</td>
</tr>
<tr>
<td>L</td>
<td>Number of rings</td>
<td>10</td>
</tr>
<tr>
<td>h</td>
<td>Average number of hops from a CH to sink</td>
<td>7.15</td>
</tr>
<tr>
<td>s</td>
<td>Number of basic sensors per cluster</td>
<td>24</td>
</tr>
<tr>
<td>d</td>
<td>Number of basic sensors within a communication range</td>
<td>48</td>
</tr>
<tr>
<td>e</td>
<td>Length of each MAC in bits</td>
<td>32</td>
</tr>
</tbody>
</table>
Quantitative analysis
Quantitative analysis

![Graph showing the relationship between the number of compromised basic sensors in deployment area (k out of 9600) and the expected value (E[Y] out of 400). The graph includes lines for different values of m (5, 6, 7, 8) and distinguishes between simulation and analytical results. The parameters are n = 12, C = 400.](image-url)
Poisson approximation
Poisson approximation

\[E[Y] \text{ (out of 400)} \]

\[\text{Number of compromised basic sensors in deployment area, } k \text{ (out of 9600)} \]

- \(m = 5 \), simulation
- \(m = 6 \), simulation
- \(m = 7 \), simulation
- \(m = 8 \), simulation
- \(m = 5 \), Poisson Approximation
- \(m = 6 \), Poisson Approximation
- \(m = 7 \), Poisson Approximation
- \(m = 8 \), Poisson Approximation

\(n = 12, C = 400 \)
Parameters selection

- Choice of C
Parameters selection

- Choice of n
Overhead analysis

<table>
<thead>
<tr>
<th>Overhead</th>
<th>CH</th>
<th>Basic sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>709.2 bytes [8+(2+4) \times n]+[8+8+(2+4) \times n] \times h</td>
<td>12 bytes [(2+4)+(2+4)]</td>
</tr>
<tr>
<td>Computation</td>
<td>1 aggregation 1 encryption and 24 MACs</td>
<td>3 MACs</td>
</tr>
<tr>
<td>Storage</td>
<td>264 bytes [1+8+s] \times 8</td>
<td>392 bytes [1+1+(d-1)] \times 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size of basic sensor ‘s ID</th>
<th>2 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of CH ‘s ID</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Key size</td>
<td>8 bytes</td>
</tr>
</tbody>
</table>
Comparison

- Compare with SEF
 - Communication
 - The number of hops routing to the sink in heterogeneous sensor network is smaller than in a homogeneous one.
 - Forwarding report only happen on the powerful CH nodes.
 - Computation
 - Relay CH don’t need do verification when forwarding data
 - Storage
 - SEF need a large number of key to increase the probability of key sharing between nodes.
Conclusion

- Present a sink filtering scheme in clusters of heterogeneous sensor networks
 - Solve the threshold breakdown problem.
 - Graceful performance degradation
 - Scalable and efficient in communication, computation and storage

- Using Poisson Approximation to investigate the performance tradeoff between resilience and overall cost
 - Dividing into more clusters is helpful to improve the resilience, but with a significant sacrifice on the overall cost
 - Much denser deployment of basic sensors is a feasible way toward resilient security
State of the Art

